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{T}G d{d. P} test d = if decide d

then (true, G d)
1£(1/100); F d{d. P} else (false, F' d)

State-dependent specification:

if v
{ 7 (1/100) }testd{(v,d).P* ( then 7 (1/100) )}

else
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_ collisionFree N * hash collisionFree (N + 1)
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Hash Collisions

hash : A — int64

hash x = match get z with

Some (v)
| None =

end

= U

let v = sample(2%4) in

set x v;
v

Property: collisionFree N

collisionFree N x*

} hash {v.

7 (0)

4

N
567

> Already Hashed

> New Hash

)

collisionFree (N + 1)
getx = v

}
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¥
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Hash Collisions

hash : A — int64
hash x = match get z with

Some (v) = v Derived!
| None = let v = sample(24) in
set x v;
v { collisionFree N x } hash o { collisionFree (N + 1) x* }

/ L JEOUENUES VRN

collisionFree NV x hash collisionFree (N + 1) x
5(N -276%) A getx =v

Property: collisionFree N
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@ B
T B
7 X
8 B
7 XN
’.
I

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

{ collisionFree N } hash 1 { collisionFree (N + 1)
I( ()

|

N) * * 7 I(N+1)

collisionFree IV I(IV) * collisionFree (N + D) x
check p

i(k';?) i I(N + D)

|

Atmost / (k- D)

|
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Current and Future Work

> Expected termination bounds
> Randomized SAT solver
> Rejection samplers

> Resizing Hash Tables

- Markus

Thank you for your attention!




