Eris

Resourceful error bound reasoning for higher-order probabilistic programs

Alejandro Aguirre

Philipp Haselwarter / AARHUS
Markus de Medeiros P UNIVERSITY
Kwing Hei Li

. W
Simon Oddershede Gregersen NYU

Joseph Tassarotti
Lars Birkedal

Approximate Specifications

hash : A — int64

collide : A —- A — bool
collide z y = (hash = = hash y)

Approximate Specifications

hash : A — int64

collide : A —- A — bool
collide z y = (hash = = hash y)

{x # y} collide x y {b. b = false} ~

Approximate Specifications
aHL

{x # y} collide x y {b. b = false}, 4.

Approximate Specifications
aHL

{x # y} collide x y {b. b = false}, 4.

Useful reasoning principles,

Union Bound Sampling

(PYe{Q), {Q}e2 (R, Privg S| <e

{P}esea{R}e, 1, {True} sample(D) {z.x € S},

Approximate Specifications
aHL

{x # y} collide x y {b. b = false}, 4.

Useful reasoning principles,

Union Bound Sampling

(PYe{Q), {Q}e2 (R, Privg S| <e

{P}esea{R}e, 1, {True} sample(D) {z.x € S},

Approximate Specifications

aHL

{x # y} collide x y {b. b = false}, 4.

Useful reasoning principles,

Union Bound

{P}e {Q}el {Q} e {R}@

{P} €1, €2 {R}El + €9

Sampling
Prlz &S] <e

x~D

{True} sample(D) {z.x € S},

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Limitation 1

Va{}f a{...}E(a)
{...ymap f L{ .. .}9

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Limitation 1

Va{}f a{...}e(a)
{...}map f L{”'}Ze(a)

acl

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Limitation 1

Va{}f a{...}e(a)
{...}map f L{”'}Ze(a)

acl

error specifications propagate

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

test d = If decide d

{1}Gdid P then (true, G d
U HEdad. P}1/100 else (1(‘a|se,’F d))

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Limitation 2

{1}G d{d. P}y
{T}F d{d.P}y

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

Limitation 2

test d = if decide d
then (true, G d)
else (false, F' d)

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

test d = if decide d
{1G did P then (true, G d)
{1}F d{d P}1/100 else (false, F' d)

{I}test d{(v,d). P}o

Approximate Specifications
aHL

Useful reasoning principles, but limited compositionality.

test d = if decide d
{1G did P then (true, G d)
{1}F d{d P}1/100 else (false, F' d)

{I}test d{(v,d). P}o
\

error depends on return value

Approximate Specifications
aHL

{x # y} collide x y {b. b = false}, 4.

Error Credits

Eris
{z # y} collide x y {b.b = false}, .
s -

{£(275Y) % o # y} collide z y {b. b = false}

Error Credits

Eris

{z # y} collide x y {b.b = false}, .

f -

{£(275Y) % o # y} collide z y {b. b = false}

Expected Error Bounds as a Resource

Error Credits

Eris

Expected Error Bounds as a Resource

17 (e) x P} f{Q]

[ri's

Error Credits

Eris

Expected Error Bounds as a Resource

17 (e) x P} f{Q]

(P} F{Q}
(Px4(e)} fF{Q * £ ()} f(e)|FP

{ (Prs@} 1@} boim)

The Eris Logic

The Eris Logic
Standard higher-order specification:

Va, {P a} f a{Q a}

{>l<<P a>}mapr{L’. X (@ a>}

aclL acl’

The Eris Logic

Standard higher-order specification:

Va, {P a} f a{Q a}

{>l<<P a>}mapr{L’. X (@ a>}

aclL acl’

Derived error-aware specification:
vy, {£(27°)} hash y {v.v # o'}

{* f(264)} map hash L {La Sk o v,}

acl acl’

The Eris Logic
| Limitation2

{T}G d{d. P} test d = if decide d

then (true, G d)
{1} F d{d P}y else (false, F' d)

{T}test d{(v,d). P}

The Eris Logic

{T}G d{d. P} test d = if decide d

then (true, G d)
1£(1/100); F d{d. P} else (false, F' d)

State-dependent specification:

if v
{ 7 (1/100) }testd{(v,d).P* (then 7 (1/100))}

else

Error Credits

Core Rules

Error Credits

Core Rules

F(1)F L

Error Credits

Core Rules

s
7(e1+ &) A= Z(e) x £ (&)

Error Credits

Core Rules

-1

- £ (e1) *

ExND [Ex] = €

{7 (€)} sample(D) {z. 7 (¢.)}

Error Credits

Derived Rules

aHL Union Bound
{P}er {Q}el {Q} ez {R}EQ

{P}eea{R}e, 1 ¢,

] aHL Union Bound
Error Credits (Pre {Q), {Q}es (R},
Derived Rules {Pleisea {R}¢, 1 ¢,
{/(e1) * P}er {Q}

7 (€2) * Qt ex {1}

] aHL Union Bound
Error Credits {PYe {Q), {Q}e2{R},
Derived Rules {Plesea{R}te) 4o,
{Z(e1) * PYer {Q} /(€1 +€) x P

{£(e2) » Q} e {R} €1; €2

] aHL Union Bound
Error Credits {PYe {Q), {Q}e2{R},
Derived Rules {Plesea{R}te) 4o,
{#(c1) * P} er {Q} 7(e1) x 7(ex) x P

{£(e2) » Q} e {R} €1; €2

- aHL Union Bound
Errc_)r Credits Pre (@b (Q)erln),
Derived Rules (PYeres (Rl 1o,
£(e1) % £ (e2) % P
{Z(e2) x Q} e2 { R} €1; €
{f(ﬁ) * P} €1 {Q} l
7 (€2) * Q

€2

Error Credits

Derived Rules

aHL Union Bound
{P}er {Q}el {Q} ez {R}EQ

{P} 61; €2 {R}El _|_ €9

é(el) K f(€2) x P Splitting

Frame Rule

Error Credits

Derived Rules

aHL Sampling
Prix ¢S] <e

x~D

{True} sample(D) {z.z € S},

10

Error Credits

Derived Rules

7(1/5)
f(sample(5))

aHL Sampling
Prix ¢S] <e

x~D

{True} sample(D) {z.z € S},

10

Error Credits

Derived Rules

aHL Sampling
Plb[x ¢S] <e

{True} sample(D) {z.z € S},

#(1/5)

f(sample(5

RN

7(0)
f(4)

10

Error Credits

Derived Rules

aHL Sampling
Pr |z &S] <e

acND

{True} sample(D) {z.z € S},

#(1/5)

f(sample(5

R,

l

1

10

i aHL Sampling
Error Credits Prie¢S)<e
Derived Rules {True} sample(D) {z.z € S},

7(1/5)

f(sample(5
7| \
/(0) f(2) 3 f(4)
L

Spending

Error Credits

Derived Rules

#(1/5)

f(sample(5

aHL Sampling
Prizx €S| <e

LBND

{True} sample(D) {z.z € S},

TN

f(0)

[

More derived rules in paper

J

f(2) 3 f(4)
l
1

10

Hash-based authentication in Eris

Hash Collisions

hash : A — int64

hash x = match get x with
Some (v) = v
| None = let v = sample(2%%) in
set x v;
v
end

11

Hash Collisions

hash : A — int64

hash x = match get x with
Some (v) = v
| None = let v = sample(2%%) in
set x v;
v

end

> Map is collision-free

Property: collisionFree N
perty > At most /V hashes

Hash Collisions

hash : A — int64

hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;
v
end

Property: collisionFree N

12

Hash Collisions

hash : A — int64

hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;
v

collisionFree N * collisionFree (N + 1)
hash z < v.
7(7) get x = v

end

Property: collisionFree N

12

Hash Collisions

hash : A — int64

hash x = match get x with
Some (v) = v
[None = let v = sample(24) in
set x v;
v

collisionFree N * collisionFree (N + 1)
hash z < v.
7(7) get x = v

end

> Already Hashed

Property: collisionFree N

}

12

Hash Collisions

hash : A — int64

hash x = match get x with
Some (v) = v
[None = let v = sample(24) in
set x v;
v

collisionFree N * collisionFree (N + 1)
hash z < v.
7(7) get x = v

end

> Already Hashed
£(0)

Property: collisionFree N

}

12

Hash Collisions

hash : A — int64

hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;
v

collisionFree N * collisionFree (N + 1)
hash z < v.
7(7) get x = v

end

> Already Hashed
£(0)

> New Hash

Property: collisionFree N

12

Hash Collisions

_ collisionFree N * hash collisionFree (N + 1)
hash : A — int64 4 (?) ash & §v. get = v
hash x = match get x with
Some (v) = v
| None = |let v = sample(254) in
set x v;

v

end
> Already Hashed

7(0)
> New Hash

7 (7)

Property: collisionFree N

Credit Arithmetic

13

Credit Arithmetic

13

Credit Arithmetic

13

Credit Arithmetic

13

Hash Collisions

hash : A — int64

hash x = match get z with

Some (v)
| None =

end

= U

let v = sample(2%4) in

set x v;
v

Property: collisionFree N

collisionFree N x*

} hash {v.

7 (0)

4

N
567

> Already Hashed

> New Hash

)

collisionFree (N + 1)
getx = v

}

14

Hash Collisions

hash : A — int64
hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;

v
d collisionFree N * collisionFree (N 4 1) *
en { £(N - 2-6) hash x { v. get 7 —

Property: collisionFree N

14

Hash Collisions

hash : A — int64
hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;

v
d collisionFree N * collisionFree (N 4 1) *
en { £(N - 2-6) hash x { v. get 7 —

Simplify client dependency on N ?

Property: collisionFree N 4

Hash Collisions

hash : A — int64
hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;

v
d collisionFree N * collisionFree (N 4 1) *
en { £(N - 2-6) hash x { v. get 7 —

Simplify client dependency on N ?

Amortize over)M/ hashes

Property: collisionFree N 4

Amortized Credit Arithmetic

) £(

15

Amortized Credit Arithmetic

15

Amortized Credit Arithmetic

15

Amortized Credit Arithmetic

15

~~
<t
3_6
A
—

Vf

@
~/ —~
R
~— NN
Ny

N @
~ —~
=
~— NN
Y

— @

VS
=) ~e
~— ~—
W N

S @
\VA

Amortized Credit Arithmetic

15

Amortized Credit Arithmetic

15

Amortized Credit Arithmetic

15

Hash Collisions

hash : A — int64
hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;

v
d collisionFree N * collisionFree (N 4 1) *
en { £(N - 2-6) hash x { v. get 7 —

Simplify client dependency on N ?

Property: collisionFree N 6

{

Hash Collisions

hash : A — int64

hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;
v
end

collisionFree NV x hash collisionFree (N + 1) x
i(:\v . 2764) ash r S v. get =

Property: collisionFree N

16

{

Hash Collisions

hash : A — int64

hash x = match get z with
Some (v) = v
| None = let v = sample(24) in
set x v;
v
end

collisionFree NV x hash collisionFree (N + 1) x
i(:\v . 2764) ash r S v. get =

Property: collisionFree N

¥

collisionFree N x collisionFree (N + 1) %
(k) hash x

N)« N <M x4

"o

A

I(N +1)

(N < M) x £(An)

|

16

Hash Collisions

hash : A — int64
hash x = match get z with

Some (v) = v Derived!
| None = let v = sample(24) in
set x v;
v { collisionFree N x } hash o { collisionFree (N + 1) x* }

/ L JEOUENUES VRN

collisionFree NV x hash collisionFree (N + 1) x
5(N -276%) A getx =v

Property: collisionFree N

16

Merkle Tree

17

Merkle Tree

17

Merkle Tree

17

Merkle Tree

17

Merkle Tree

17

Merkle Tree

17

Merkle Tree

query(L2) =

17

Merkle Tree

® o
©

7

hash

query(L2) = @
hash A

7

SN,

N

ash@

What are the chances that randomly
corrupted data will pass this check?

17

What are the chances that randomly

Merkle Tree corrupted data will pass this check?

@ ﬂ > Validation program check

7 X

8 O
7N
e s
-

Merkle Tree

@
L

VAN

8 O
7N
e s

-

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

18

What are the chances that randomly

Merkle Tree corrupted data will pass this check?

@ ﬂ > Validation program check

» Collision free = check is sound

7

_ .
7
s o
_

Merkle Tree

@
L

7 X
8 ©

VAN
hash A

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

Merkle Tree

@
L

VAN

jhash\

0

hash 4

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

Merkle Tree

@

’hash\

jhash\

0

hash 4

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

Merkle Tree

@
2.
hash Q

/hash
8 0O
hash A

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

What are the chances that randomly

Merkle Tree corrupted data will pass this check?

@ ﬂ > Validation program check

» Collision free = check is sound

7 X { [<]\c[(;II>|i<sionFree]Z;(k) }hash N { coIIisior}I(:;e +(J1\;+ 1) }

What are the chances that randomly

Merkle Tree corrupted data will pass this check?

@ ﬂ > Validation program check

» Collision free = check is sound

7 X { [<]\c[(;II>|i<sionFree]Z;(k) }hash N { coIIisior}I(:;e +(J1\;+ 1) }

Merkle Tree

@ B
T B
7 X
8 B
7 XN
’.
I

What are the chances that randomly
corrupted data will pass this check?

> Validation program check

» Collision free = check is sound

{ collisionFree N } hash 1 { collisionFree (N + 1)
I(()

|

N) * * 7 I(N+1)

collisionFree IV I(IV) * collisionFree (N + D) x
check p

i(k';?) i I(N + D)

|

Atmost / (k- D)

|

18

coauthors at NESVD

Current and Future Work

> Expected termination bounds
> Randomized SAT solver
> Rejection samplers

> Resizing Hash Tables

- Markus

Thank you for your attention!

